General Information

Company
Contact
Address
Phone
Email
Application

Date

Technical Specifications

Nominal ID (in/mm) Nominal OD (in/mm)

Length (in/mm) Shaft Diameter (in/mm)

Shaft RPM Shaft Finish Shaft Material and Hardness

Housing Size and Tolerance

Load (in lbs/kg)

Temp of Operating Environment What is being used now?

Questions

If the bearing is linear, what is the length of stroke and the cycles per minute?

What is the primary load factor: radial or axial or both?

Does the bearing experience shock or excessive vibration?

If the bearing is oscillating, what is the angle of rotation, cycles per minute, and dwell time?

Are the temperature variations (if any) gradual or rapid?

Type of Media: air, gas, or liquid? Intermittent or Constant?

Is the environment abrasive in nature?

Does the environment call for electrical: dissipation or insulation?

Does the environment call for thermal: insulation or transfer?

Does the application require: FDA, NSF, USDA, 3A or USP?

Is the shaft running: vertically, horizontally, or diagonally?

Is shaft misalignment anticipated?

Are there special shaft treatments: hardcoat, ENP, chrome, TFE?

Notes about the hardware (housing material, etc.):

Chemicals in contact with the bearing

Reference

Bearing Load (P value) is LBS / (ID x Length)

<table>
<thead>
<tr>
<th>ID</th>
<th>Length</th>
<th>ID x L</th>
<th>Load</th>
<th>Load / (ID x L) = P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Relative Velocity (V) is Shaft Dia x 3.14/12 x RPM

<table>
<thead>
<tr>
<th>Shaft Dia</th>
<th>x pi</th>
<th>equals</th>
<th>dir by 12= x RPM= V Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1415</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

PV Value

<table>
<thead>
<tr>
<th>P</th>
<th>times</th>
<th>V equals</th>
<th>PV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Additional Notes